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Abstract

GPCRs are the target for one-third of the FDA-approved drugs, however; the devel-

opment of new drug molecules targeting GPCRs is limited by the lack of mechanistic

understanding of the GPCR structure-activity-function relationship. To modulate the

GPCR activity with highly specific drugs and minimal side-effects, it is necessary to

quantitatively describe the important structural features in the GPCR and correlate

them to the activation state of GPCR. In this study, we developed 3 ML approaches to

predict the conformation state of GPCR proteins. Additionally, we predict the activity

level of GPCRs based on their structure. We leverage the unique advantages of each of

the 3 ML approaches, interpretability of XGBoost, minimal feature engineering for 3D

convolutional neural network, and graph representation of protein structure for graph

neural network. By using these ML approaches, we are able to predict the GPCRs
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activation state with high accuracy (91%-95%) and also predict the activation state

of GPCRs with low error (MAE of 7.15-10.58). Furthermore, the interpretation of

the ML approaches allows us to determine the importance of each of the features in

distinguishing between the GPCRs conformations.

Introduction

G-Protein Coupled Receptors (GPCRs) are important proteins for signaling networks, such

as the Ras signaling pathway and neurotransmission.1–5 Through these networks the GPCR

proteins regulate the physiological processes and pathogenesis of diseases associated with

such signaling networks.6–8 The GPCR proteins have been a subject of significant academic

attention, which is aimed at elucidating the mechanism of activation for novel GPCRs by

structural biology and biochemical methods.9 The ubiquitous presence of GPCRs in sig-

naling networks makes them an important target of drug molecule-based therapeutics.10

Approximately, 34% of all the drugs approved by the FDA target GPCRs with the objective

of either activating (agonist) or deactivating (antagonist) the receptor.11 With the devel-

opments in computational biology, biotechnology and pharmacology, there is an increased

emphasis on efforts to regulate GPCRs activity via allosteric sites.12,13 To accomplish this

task and design therapeutics specific to the conformation of GPCRs, it is important to have

a quantitative description of the protein conformations. Such quantitative description will

allow for the improvements in rational drug design and accelerate the development of highly

specific therapeutics with minimal side effects.14

The GPCR proteins are clustered together as a protein superfamily, which is further

divided into subclasses based on the protein sequence similarity. The common feature in

all15 GPCRs is the presence of characteristic transmembrane helices, which create the lig-

and binding site in the extracellular domain and the binding site for G-protein or arrestin in

the intracellular domain.16 The binding of the ligand to the receptor causes conformational

changes in the ligand binding site. These conformational changes are communicated across
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the protein towards the intracellular region and results in large translations and bending of

the transmembrane helices.17 The comprehensive understanding of the amino acid level con-

formational changes, which cause transmembrane helix movement, is critical for the design

of effective therapeutics.18 The GPCR protein structures can be represented as quantitative

models of their features, such as the dihedral angles and contact distances. These quantita-

tive models of GPCRs are expected to be high-dimensional and difficult to interpret without

high-throughput computational methods.19,20 This leads to an interesting problem, can the

features extracted from a GPCR structure model be used to predict its conformation?

Machine Learning (ML) can help answer the question of predicting GPCR state by learn-

ing the important features which distinguishes between the different conformations of the

GPCR proteins. The developments in ML, especially Deep Learning (DL) methods, have in-

creased their applicability to solve niche biological problems. For example, AlphaFold21 and

RoseTTAFold22 have leveraged DL approaches to predict protein structure from sequence

input. AlphaFold has also made available the predicted structure model of more than 350,000

protein sequences. Other works have used Convolutional Neural Network (CNN) for the pre-

diction of protein-protein interactions,23 protein-ligand binding,24,25 protein folding,26 pro-

tein phosphorylation site,27 and protein structure classification.28 However, CNN is designed

for structured data like images, while the features which describe the GPCR conformation

are unstructured.

To this end, Graph Neural Networks (GNNs)29–32 are introduced for modeling the nodes

and their relationships (edges) within the unstructured data. Modern GNNs learn the rep-

resentations of graphs via aggregated message passing between the nodes.33 Recently, GNNs

have been leveraged in multiple domains concerning proteins, including protein-compound

interaction,34–36 protein folding prediction,21,22 and function estimation.37–39 Also, the appli-

cation of ML has been further extended to discovery of GPCR agonist40 and GPCR bioactive

ligands.41 We build upon the motivation of previous works utilizing ML for biological prob-

lems and create ML models which can predict the state of a given GPCRs protein structure
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and also describe the extent of its activation. To accomplish this goal we require a large

amount of training data comprising the GPCRs proteins in different conformations. We

used the structure models for more than 500 GPCRs proteins determined by experimental

methods, which includes the active and inactive conformations of the GPCRs, in addition to

some intermediate conformations which may represent the transition between the two key

states. We use the structure information for refined models of GPCRs from the GPCRdb

server to develop quantitative models for the different conformations of the GPCR proteins,

by predicting their state (active, inactive, or intermediate).42 In this work, we present 3

approaches for this task, biophysics-aware feature engineering followed by shallow ML meth-

ods, 3D Convolutional Neural Networks (CNNs) with voxelization, and graph representation

of protein followed by Graph Neural Networks (GNNs). The shallow ML method takes the

biophysics-aware features as input, while the DL methods, including CNN and GNN, au-

tomatically extract features from the GPCR protein structures, thus requiring little or no

domain knowledge.

We interpret and rank the importance of all the engineered features. The biophysics-

aware feature engineering allowed us to discover and incorporate the important residue

interactions and contact distances with the ML models. The ranking of engineered fea-

tures also enabled us to identify the residue positions which are important for elucidating

the GPCR conformation. The accuracy and robustness of the three approaches are bench-

marked against each other in the tasks of predicting the activation state (classification) and

the percentage of activation of the conformation (regression).

Methods

Machine Learning Models and GPCR structure dataset

The GPCRdb contains information about experimental data, phylogenetic diagrams, struc-

tures, and analysis tools for GPCRs.42 This database provides insights into the molecular
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mechanisms of GPCR activation, signal transduction, protein binding, and allosteric modu-

lation.42 From the GPCRs listed on the GPCRdb, we collect the protein data bank (PDB)

structures of the biological complexes containing the G Protein Coupled Receptor.43 Our

dataset contains 555 PDB structures coming from 105 unique receptors’ types included in

GPCRdb (See supporting information for the structures and their properties). Each PDB

structure of a GPCR is then converted to 3 different representations, including manually

selected features, voxelization representation, and graph representation. These representa-

tions are used as input for different ML models (i.e. engineered features for XGBoost,44 voxel

representation for 3D convolutional neural network and graph representation for the graph

neural network) to predict the activation state or the activity level (percentage activation)

(Figure 1).

Manual feature 

engineering

Voxelization

Graph 

representation

ML models 

(e.g., XGBoost)

3D CNN

GNN

Activation state 

(classification)

Activation percentage  

(regression)

GPCR PDB structure Representations Models Tasks

Figure 1: The three frameworks that we developed to predict the GPCR activation state.
The PDB structure of each GPCR is converted into a representation (i.e. manually selected
features, voxelized space, or graph representation) before being used as input to each machine
learning model. The model will then output either the state or activation percentage of the
GPCR.
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Feature Extraction and Shallow Machine Learning

The PDB structures for GPCRs often contain co-crystallized lipid molecules, non-GPCR

proteins, and drug molecules. Therefore, the PDB structures are preprocessed before being

used to generate the input for the ML methods. As a data preprocessing step, we extract

only the structure of the transmembrane (TM) region of the receptors and removed all other

segments of the proteins from the complex. The activation state labels for training the ML

model are obtained from GPCRdb. The labels for the classification task correspond to 3

states of the receptors: active state, inactive state, and intermediate state. The interme-

diate state corresponds to the structure transitioning from between the active and inactive

conformation. The labels for the regression task show the activation level for each receptor,

which were also obtained from the GPCRdb. The truncated structures are then aligned with

respect to each other to identify the position of amino acids in GPCRs with different peptide

sequences. The aligned structures are used for feature extraction to describe the receptors’

state. The input features for the shallow ML models comprise of the contact distances and

distribution of reciprocal interatomic distances (DRID) of the identified amino acid pairs

and the TM helix pairs. To assess the performance of shallow ML models, we train and eval-

uate different ML models, including Random Forest, Support Vector Machine, XG-Boost,

and Logistic Regression. 5-fold cross validation is performed for these models at both the

classification task and the regression task.

To manually engineer the protein features for shallow ML prediction, we select 420 residue

pairs by randomly picking 20 residue pairs on each of the 21 possible TMs pairs. The average

closest heavy-atom distance of the residue pairs is then calculated from all of the 555 protein

structures in the dataset. It is observed that for a given contact distance pair, a larger dif-

ference between the average values of active and inactive conformation (∆M , measured as

a distance between peaks of histograms in active (green plot) and inactive (red plot) states,

Figure 6c-f) correlates with higher prediction accuracy (Figure 6a). To achieve high clas-

sification and regression prediction accuracy, we rank the 420 random residue pairs based

6



on the prediction accuracy by using each individual feature. We then choose the top 105

features (5 features per TM pair) to train our model (Table S3). Furthermore, in the list of

105 pairs, we observe 21 residue pairs containing at least one residue belongs to the polar

network of GPCR activation (Table S2). For these features we extract the C − α contact

distance and the Distribution of Inverse Reciprocal Distances (DRID). The concatenated

vector of contact distances and DRID is the input vector for the ML models. XGBoost

model and Random Forest classifiers are implemented to predict the states of the GPCRs

and corresponding regressors are implemented to predict the activation level. XGBoost is

a gradient boosting framework which utilizes second order derivatives and Random Forest

is an ensemble method which uses decision trees and takes the mode of the trees as the

output.44,45 We implement these algorithms from the Scikit-learn python library.46 Random

Forest classifier is implemented with 25 decision trees in the ensemble, bootstrapped initial-

ization of the trees and Gini impurity for calculation of information gain. The XGBoost

classifier is implemented with the gbtree boosting method, learning rate of 0.3, max tree

depth of 6, and uniform sampling of the training instances.

Voxelization and 3D Convolutional Neural Network

Voxelization is a technique for mapping the continuous 3D space to a discrete 3D mesh grid

using unit cubic cells (voxels).47 It has been used to generate geometrical representation

of 3D objects for applications such as computer-aided design model classification48 and 3D

vision.49,50 Recently, voxelization has been introduced to the domain of molecular/atomic

property predictions. The voxelized 3D space can preserve 3D atomic structural informa-

tion while making ideal input to CNN.23 CNN has achieved outstanding performance in

applications such as image classification.51–54 The convolutional layers in the CNN function

as automatic feature extractors that detect important features from the input without hu-

man supervision. Combining the voxelization and 3D CNN creates a framework to learn

the representation via filters in an efficient way. CNN can automatically extract relevant
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features from the input so that feature engineering is no more needed. The combination

of voxelization and CNN achieved high accuracy in tasks such as predicting bioactivity of

small molecules,55 interatomic force and potential prediction,56,57 and prediction of binding

affinity of protein-ligand complexes.58 The combination of 3-dimensional voxelization and

CNN can be another approach to featurize the GPCRs.

Conv1(8, 10, 1)

Conv2(16, 6, 1)

Conv3(24, 3, 1)

Conv4(32, 2, 1)
[256]

Size = [61, 76, 99]

Figure 2: Voxelization and 3D convolutional neural network for GPCRs. At the top of
the figure is a cartoon showing the voxelization process of atomic structures. The left part
of the figure shows the voxelized 3D structure of a GPCR. Cyan, blue, yellow, and red
voxels represent carbon, nitrogen, sulfur, and oxygen atoms, respectively. Voxels containing
hydrogen atoms are not shown to avoid an over-crowded view. A zoom-in view of the
voxelization of one residue is shown. A 4-layer 3D CNN extracts a feature vector from the
voxelized GPCR structure for activity prediction.

The voxelization of the GPCRs is shown by the cartoon at the top of Figure. 2. The

3D space including and around an atomic structure is represented using a grid of voxels,

called the voxelized space. To enforce the consistency of the size of input to the CNN, We

take the maximum value of the length, width, and height of all the GPCRs in the dataset

and construct a voxelized space that can fit all GPCRs with the size of 61�A × 76�A × 99�A

in the x, y and z dimension. In this work, each voxel is a cube with the side length of 1�A,

thus there are 458964 voxels in total. All voxels have an initial value of 0. If the cartesian

coordinates of an atom are within a voxel, the voxel is then given a value of the atomic
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number of the atom in it (e.g. 6 for carbon and 8 for oxygen atom). In some rare cases

when two atoms can appear in the same voxel, for example, a hydrogen atom is diagonally

opposite to another atom in one voxel, the voxel is given the value with the greater atomic

number of the two atoms. Since most overlapping happens between a non-hydrogen atom

and a hydrogen atom, which has less effect on the GPCR property,23 taking the greater

atomic number can minimize the information loss. 3D CNN differs from 2D CNN from the

dimension of the convolution filters. For this specific work, we choose to use 3D CNN instead

of 2D CNN because the former can better extract 3D structural features from the GPCRs

data.23,25,26 The voxelized GPCR structures are then fed into a 4-layer 3D CNN to extract

features. There are 8, 16, 24, and 32 filters, and the kernels are cubes with sizes of 10, 6, 3,

and 2 for each layer of the CNN, respectively. (see Figure 2 The stride for the convolution

calculation in all layers is 1. 3D batch normalization and average pooling are applied after

each convolutional layer.59 The feature vector output from the CNN has a size of 256. A

3-layer fully-connect neural network, which has 400, 256, and 64 neurons in each layer, is

used to predict the activity of GPCR using the feature vector. ReLU activation60 is used in

both the CNN and the fully-connected neural network.

CNN performance scale very well with the size of training sets. In addition, CNN is

translation-rotation invariant, making data augmentation a viable solution and technique

for enhancing their performance. We perform data augmentation53,61,62 on the voxelized

GPCR structures. Each voxelized GPCR structure is augmented by flipping along either

x, y, or z axis, and the augmented samples are given the same label (Figure S2). The

size of the dataset is increased by 3 times through this method. During the 5-fold cross

validation, original GPCR structures and their augmented samples in the training set are

used for training the model, while only the original GPCR structures in the test set are used

for testing.
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6Å

Node feature:
• Residue type
• Dihedral angles
Edge feature:
• Distance 
• Direction GPCR graph

Graph convolutions 
(repeated)

Pooling Activation
prediction 
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Figure 3: Overview of the Graph Neural Network (GNN) framework for GPCR activation
prediction. Left: Each node in the GPCR graph represents a residue and edges are created
to connect residue pairs within 6Å. Nodes are described by the amino acid type and the
dihedral angles, while edges are defined by the distance and direction between residues.
Right: The GNN model takes in the GPCR graph and sequentially runs through the graph
convolutional layers, a pooling layer, and fully-connect layers to predict the activation.

Graph Neural Network

Previous ML and 3D CNN models require either manually engineered features or voxelization

to process proteins into Euclidean data, which can lose important information. Graph Neural

Networks (GNNs),29,31 on the other hand, are designed to learn representation directly from

unstructured graphs, such as chemical compounds.21,24,32 GNN is built upon the graphical

data which consists of different numbers of nodes and edges in between. Such a strategy

provides a more flexible way to model the protein structure and helps keep structural infor-

mation. In our case, a GPCR is considered as a graph G , where V denotes all the residues

(nodes) within a GPCR and E denotes connections (edges) between residues.34,63,64 We fur-

ther define Xv as the node attribute for v ∈ V and euv as the edge attribute for (u, v) ∈ E.

In the GPCR graph as shown in Figure 3, each node represents a residue and each edge rep-

resents the distance between neighboring residues. We define the distance between residues

as the distance of alpha carbons (Cα), which captures the backbone structure of GPCRs.

Neighboring residues within 6Å are connected by edges, which nicely covers the adjacent

residues and meanwhile excludes remote residues to increase computational efficiency.
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For each node v, Xv is defined as the 20-dimensional one-hot encoding of all the 20

amino acid type, Av, together with the dihedral angles φv and ψv, namely Xv = [Av, φv, ψv].

Each edge attribute euv is defined as euv = [duv, xuv, yuv, zuv], where duv is the distance and

[xuv, yuv, zuv] is the normalized directional vector between node u and v. In the experiments,

combinations of different node and edge features are investigated. Namely, we compare

the test accuracy of GNN models with different features included to explore which input

features contribute more to the prediction of GPCR activation. For example, the GNN

model is trained with only node amino acid type as the node feature in comparison with the

model with both amino acid type and dihedral angles included.

The Graph Neural Network (GNN) takes in the node and edge attributes and update

the node representations iteratively through aggregation and combination operations.29,65–67

Let h
(k)
v denote the representation of node v at the k-layer in the GNN and h

(0)
v is initialized

as h
(0)
v = X ′v = lv(Xv), where lv is a linear projection which maps Xv to the embedding

dimension. Similarly, edge attributes are mapped to the same dimension through a linear

projection le, where e′uv = le(euv). We build our GNN following the Graph Isomorphism

Network (GIN)68 with edge attributes included69 as this has been demonstrated a powerful

GNN model in various applications.33,70 The update rule of node representations in each

graph convolution layer is defined as Equation 1:

h(k)v = f (k)

hk−1v +
∑

u∈N (v)

σ(h(k−1)u + e′uv)

 , (1)

whereN (u) denotes all the nodes directly connected to u through edges, σ(·) is the activation

function, and f (k)(·) is the non-linear update function. In our case, ReLU60 is developed

as activation function and f (k)(·) is modeled by fully-connected layers. After K layers of

graph convolutions, we obtain the updated node representations h
(K)
v for v ∈ V . An average
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pooling is implemented to extract the graph representation hG as given in Equation 2

hG =
1

|V |
∑
v∈V

h(K)
v . (2)

Another prediction head is developed using fully connected layers which takes hG and outputs

the prediction of the activation, which can be either the classification of whether the GPCR

graph is activated or the regression of the activation percentage.

In our GNN model, we develop 4 graph convolutional layers with the dimension of node

representation 128 and a batch normalization layer59 is added after each graph convolutional

layer. The prediction head contains 2 hidden layers with dimensions 64 and 32, respectively.

The model is trained for 100 epochs with batch size 32. Adam is leveraged to update the

weights with an initial learning rate of 0.001 and weight decay 10−5. The learning rate

decays to 0.0001 after training for the first 50 epochs.71 Similarly to training the shallow

machine learning and 3D CNN models, we run 5-fold validation and within each fold the

whole dataset is randomly split to training/validation set by the ratio of 4:1.

Results and discussion

Experimental Results

Table 1 lists the GPCR state classification results of different machine learning methods

on the 5-fold validation. We implement accuracy and F1 score as two metrics to evaluate

the classification performance of each model. The accuracy measures the ratio of correctly

predicted instances. The F1 score is defined as the harmonic mean of precision and recall of

the predictions, where precision is the fraction of true positives and all positive predictions

and recall is the fraction of true positive and the total positive samples. Comparing to

accuracy, F1 score provides a better metric when data is imbalanced, i.e., number of data

varies in each category. In the shallow ML tests two protein featurization schemes were

12



used; the distance between any two non hydrogen atoms in 420 random pairs of residues and

selected 105 pairs providing the most ML accuracies and those residues which are involved

in the polar network of proteins. XGBoost model with 105-pairs surpasses the other models

on both prediction accuracy and F1 score, indicating that the selected features capture

the important residue networks which reflect the GPCR activation state. Comparing to

XGBoost, GNN also achieves comparable performance while requiring much less feature

engineering compared to the XGBoost and learning to extract important features related to

the activity of GPCRs. The regression results for the percentage of GPCR activation, are

also shown in Table 2 with both rooted mean square error (RMSE) and mean absolute error

(MAE) reported. The results show that 3D CNN fails to compete with other methods.

One possible explanation for the lower performance of 3D CNN is that the voxelization

of amino acids may lead to loss of important information about the type of residues and its

stereo-chemical properties. Additionally, the structures for GPCRs from X-Ray diffraction

and Cryo-EM can feature missing side chain information for certain residues and in certain

cases has no information for the hydrogen atoms. Since the graph featurization method does

not require atomic positions of all atoms, it is agnostic to the lack of such information. The

graphical featurization of proteins captures the global structural features of GPCRs, such as

the TM3-TM6 distance, in addition to the individual amino acid features. Therefore, even

in the cases of missing residues from X-Ray structures, this method is able to accurately

classify the GPCR structure as active, inactive and intermediate. Additionally, in the case

of GPCRs, the global conformation changes are encoded into the relative distance between

residue pairs. The absence of side-chain atom information will not eliminate the positional

information of the residues. Since, in the manual featurization scheme we have calculated

the closest heavy atom distances, the relative distance between residue pairs is still encoded

into the XGBoost model input. This ensures high robustness against missing residues in the

model input, as even if the positional information of a few atoms is missing, the remainder

of the residue is sufficient for capturing the global features of GPCR conformation. In GNN,
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we conduct mean pooling which averages over all the updated node features to extract the

feature for the whole GPCR structure. Thus, even some residues may be missing in the

data. This will not affect the implementation of GNN models. Finally, even the 3D CNN

methodology, which explicitly voxelizes the atomic positions of all residues, can capture the

global features very well and generates accurate predictions for the GPCRs. To verify the

impact of hydrogens on prediction accuracy of 3D CNN, we created an augmented dataset

of GPCR structures with all hydrogens removed. We then evaluated the pre-trained model

performance specifically for the structures for both instances (GPCRs with and without

hydrogens). The results from Table. S5 and Table. S6, demonstrate that the performance

of 3D CNN slightly drops for both classification and regression tasks with the absence of

atomic information of hydrogen atoms, indicating that the presence of hydrogen is beneficial

to 3D CNN in predicting activation of the GPCRs. To further boost the performance of 3D

CNN more training data can be incorporated. It is noteworthy that the data augmentation

improves the classification accuracy of 3D CNN from 0.8829 to 0.9117, and the regression

MAE from 0.131 to 0.1058, respectively. Therefore we can expect a better performance of

3D CNN from a larger training dataset.

To better understand the impact of mutations on GPCR conformations and sensitivity

of the presented methods to such mutations, we analyzed cases of reported mutations in the

GPCR and their corresponding effect on protein conformation. For instance, in the case of

Neurotensin 1 Receptor (NTSR1), the experimental method of directed evolution has been

used to obtain the NTSR1 protein in the inactive conformation (PDB: 3ZEV). Directed

evolution caused the protein to acquire 11 point mutations, (namely A86L, H103D, H105Y,

A161V, R167L, R213L, V234L, I253A, H305R, F358V, and S362A).72,73 These mutations

were attributed to higher stability of the inactive conformation of NTSR1 and they have a

cumulative effect on the inactivation of NTSR1. Similarly, in the case of Glucagon like Pep-

tide 1 Receptor (GLP-1R), the active (PDB: 5VAI) and the inactive (PDB: 6LN2) structures

have a sequence identity of 90.48%,74,75 indicating that during the experimental processes
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of determining these structures, mutations were accumulated. However, the featurization

schemes proposed in this work can explicitly encode such mutation information in the inputs

to the GNN, 3D CNN and XGBoost models. The featurizing schemes are able to incorporate

atomic level information and the spatial orientation of amino acids, therefore, the feature

space is influenced by the mutations occurring in the structures. Voxelization can encode

spatial organization of atoms and atoms types, where even a single atom change is encoded

into the model input. In the case of GNN, each node denotes the residue. Therefore, the

mutation information is naturally encoded in the GNN models, as mutated GPCR possess

different residues at certain positions. Finally, the inter-residue distance based featurization

for XGBoost encodes the spatial atomic organization by considering the closest heavy atom

distance between the amino acid pairs. These featurization schemes allow the encoding

of point mutations into the model inputs and then predict the GPCR conformation, and

percentage of activation with high accuracy.

Table 1: Performance of different models for GPCR state classification. We report the mean
and standard deviation of the accuracy and F1 score in 5-fold validation.

Model Accuracy F1 score
XGBoost for 105-pairs 0.9586 (0.0044) 0.9571 (0.0033)
XGBoost for 21-pairs 0.9369 (0.0098) 0.9339 (0.0102)
3D CNN 0.9117 (0.0438) 0.7708 (0.1411)
3D CNN w/o data augmentation 0.8829 (0.0446) 0.7604 (0.1634)
GNN 0.9585 (0.0176) 0.9386 (0.0296)

Table 2: Performance of different models for regression to degree of GPCR activation. We
report the mean and standard deviation of the RMSE and MAE in 5-fold validation.

Model RMSE MAE
XGBoost for 105-pairs 0.1291 (0.0701) 0.0715 (0.0074)
XGBoost for 21-pairs 0.1605 (0.0682) 0.0969 (0.0077)
3D CNN 0.1420 (0.0394) 0.1058 (0.0289)
3D CNN w/o data augmentation 0.1750 (0.0238) 0.1310 (0.0231)
GNN 0.1449 (0.0048) 0.0897 (0.0041)
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Misclassified GPCRs and tSNE visualization

To further compare the machine learning models, we investigate the distribution of mis-

classified GPCRs by class and the confusion matrix for each model. Figure 4a shows that

GPCRs of intermediate state are difficult for the 3D CNN model to classify. 3D CNN mis-

classified 33, 6, and 10 GPCRs in intermediate, inactive, and active states, respectively,

indicating that intermediate state GPCRs are very hard for 3D CNN to distinguish. Similar

to 3D CNN, XGBoost model also misclassified more GPCRs of intermediate state than of

the other two states. Compared with 3D CNN and XGBoost model, GNN demonstrates

the same level of accuracy for GPCRs of all activation states. The confusion matrix of each

model is normalized over the ground truth condition (every row). Although 3D CNN model

achieves 98% and 95.5% accuracy in classifying inactive and active GPCRs (Figure 4d), the

model misclassifies 75% of the intermediate GPCRs to the inactive state. The low accuracy

for 3D CNN in classifying the intermediate state GPCRs not only corresponds to its lower

F1 score (Table 1) compared with the other 2 models but also hinders it to achieve higher

accuracy as the GNN. Moreover, the XGBoost and GNN model tend to misclassify inactive

of active GPCRs to the opposite activation state instead of the intermediate state. For ex-

ample, XGBoost model misclassifies none of the inactive or active GPCRs as an intermediate

state. On the other hand, the 3D CNN tends to misclassify the inactive or active GPCRs to

the intermediate state instead of the opposite activate state. A reason for the difference of

models in the misclassification is that the 3D CNN makes predictions based on the extracted

structural features of the GPCRs, and the structural features can be very different between

the inactive and active GPCRs.

The t-SNE76 visualization of the features learnt by 3D CNN and GNN can help us

rationalize the superior performance of the GNN method compared to 3D CNN. t-SNE is a

dimensionality reduction technique that preserves the local structure of the data points (i.e.

data points are similar to each other if they are clustered). It has been vastly adopted in

the field of bioinformatics.77–79 A latent feature vector for each GPCR is extracted during
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Figure 4: (a) Number of misclassified GPCRs in each activation state for the three models.
(b)-(d) Normalized confusion matrix of each model.

the training of GNN and 3D CNN models. The feature maps learnt by GNN and 3D CNN

can be passed through a series of Fully Connected layers of neural networks (Multi Layer

Perceptron, MLP). A latent feature vector is the output of the last layer of the FC layers.

The output of the last layer is a dense feature representation of the inputs as it represents

all the information learnt by the preceding layers of the network. This latent feature vector

can be used as an input for visualization in 2D space by using t-SNE.

Here, t-SNE is used to map the latent feature vector of all GPCRs into a 2D space (Fig-

ure 5). In this 2D space, the t-SNE embedding 1 is the mapping of the latent feature vector

onto the first dimension and t-SNE embedding 2 is the mapping of the latent feature vector

onto the second dimension. Although the active and inactive GPCRs are well-separated in
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the 2D visualization of the latent feature learned by 3D CNN (Figure 5a), the boundary of

the intermediate state GPCRs cluster is not obvious. This corresponds to the high misclas-

sification rate of 3D CNN on intermediate state GPCRs because the feature extracted by

3D CNN does not distinguish the intermediate state from the others. On the other hand,

in the case of GNN latent feature visualization, almost all GPCRs are clustered with other

members of the same activation class. The comparison between the t-SNE visualizations

of 3D CNN and GNN extracted features shows that GNN can maximize the difference be-

tween GPCRs of different activate states, which results in the higher accuracy of GNN in the

classification task. Moreover, the t-SNE visualization can help to find mislabeled GPCRs.

For example, the GLP1R 5NX2 GPCRs (bottom right corner of both Figure 5a and 5b) is

labeled as an intermediate state but clustered with active state GPCRs using both GNN

and 3D CNN learnt features. The classification for intermediate class is also particularly

challenging due to the lack of consensus in the biophysics literature for defining intermediate

state of GPCRs.80,81 The resultant ambiguity in the intermediate label creates confusing

classification task for both the 3D CNN and GNN models.

Feature Engineering and XGBoost

We investigate the prediction accuracy using those features involved in polar network in

GPCR activation (Table S1).82 Such features include the hydrogen bonds stabilizing both

the active and inactive states of opioid receptors which have to be rearranged to achieve

the active conformation. Most of the residues engaged in the polar network are conserved,

suggesting that they may have similar functions in GPCR activation. We observe that the

list of top 105-pairs includes 21 residue pairs where at least one residue belongs to the polar

network in GPCRs (Table S2). By using these 21-pairs of contact distances as input, we were

able to predict the GPCR state with 92.25% accuracy for the Random Forest model and

93.69% accuracy for the XGBoost model. The comparison of prediction accuracies through

Random Forest and XGBoost model reveals that the difference between their prediction
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Figure 5: t-SNE dimension-reduced visualization of GPCRs using features learned by (a) 3D
CNN and (b) GNN. Each GPCR is colored based on its activate level. Rectangle, triangle,
and circle scatter points represent inactive, intermediate and active GPCRs, respectively.
Snapshots of some GPCRs that are clustered to other activation states are selected to be
shown.

accuracies for different datasets is no more than 1.44 percent (Figure 6b).

We explore the normalized histogram of the closest distance between two non-hydrogen

atoms of the residue pairs over 555 proteins and the prediction accuracy out of XGBoost

model, with corresponding PyMOL83 representation of the residue pair on NTS1 protein

(Figure 6c-f). Here ∆M is measured as the distance between peaks of histograms in active

(green plot) and inactive (red plot) states. 3.40-7.49 residue pair achieve 72% prediction

accuracy where 7.49 residue belongs to the polar network of GPCR activation. On NTS1

protein, N7.49 rotates 46.6◦ and translates 1.6Å. On the other side, A3.40 rotates 6.6◦ and

translates 1.5Å (Figure 6c). The pair of 6.38-7.46 in which 7.46 residue engaged to the

polar network obtained 69% prediction accuracy. The residue pair rearrangement on NTS1

protein is associated with a 3.6Å translation and 69.4◦ rotation of S7.46 and 4.1Å translation

and 32.5◦ rotation of R6.38 (Figure 6d). 6.31-3.32 residue pair, where 3.32 residue belongs
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Figure 6: (a) Correlation between prediction accuracy and difference of the mean of the
closest heavy distances in active and inactive states (∆M). (b) Comparison between pre-
diction accuracy of Ransom Forest and XGBoost methods. The 105-pairs are 105 residue
pairs with top accuracies over 420 random residue pairs. The 21-pairs is 21 residue pairs
out of 105-pairs with at least one residue belongs to the polar network in GPCR activation.
Each data point is taken over 555 proteins. (c),(d),(e),(f) Normalized histogram of closest
distance of two non-hydrogen atoms of a residue pair over 555 proteins in active, intermedi-
ate, and inactive states with corresponding representation of conformational changes of the
residue pairs on NTS1 protein. The Ballesteros-Weinstein numbers are used to label the
amino acids.

to the polar network provides 68% prediction accuracy. R6.31 translates 17.6Å and rotates

114.2◦ while R3.32 has a 14.7◦ rotation and 1.1Å translation on NTS1 protein (Figure 6e).

Residue pair of 6.34-7.41 provides 67% prediction accuracy where 7.41 residue is involved in

the polar network. On NTS1 protein, L7.41 has no significant conformational changes while

V6.34 translates and rotates for 6.2Å and 33.2◦ respectively (Figure 6f).
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Comparing the accuracy of XGBoost model for 21-pairs and 105-pairs reveals that higher

dimension features improve the prediction accuracy from 93.69% to 95.86% and the regression

MAE from 0.0969 to 0.0715 (Table 1, 2). The manually engineered features improve the

performance of XGBoost model, making it comparable to the GNN model at the classification

task (95.86% vs 95.85%) and better than the GNN model at the regression task (0.0715 vs

0.0897, Table 1, 2). In addition to using ML methods, correlating important residue positions

with the GPCR structure can provide insights into the GPCR conformational landscape. By

comparing the ranked list of features from our feature engineering method with the important

residue interactions in literature, we conclude that the feature engineering method is able to

identify the important descriptors of the GPCR states and conformations. The top ranking

features which best distinguish between the active and inactive conformation of GPCRs, can

be the potential targets of therapeutic molecules to regulate the GPCR structure-activity-

function relationship.

Conclusion

In this work, we have developed 3 ML-based approaches to predict the discrete state and ac-

tivation level of all the GPCR structures. To learn the structure activity relations in GPCRs,

we developed 3D CNN, GNN, and XGBoost models. The 3D CNN approach requires mini-

mal feature engineering and can extract important features from the voxelized representation

of the protein structure. However, the 3D CNN approach also has the lowest accuracy of the

3 methods that we have developed (91%). The GNN approach, in comparison to 3D CNN,

offers improvement in the prediction accuracy for both the classification (95.85%) and regres-

sion task (MAE 0.0897). The GNN approach incorporates the notion of feature engineering

by generating a graph representation of the protein structure by encoding the residue type,

dihedral angles. In the third approach, we have designed and engineered biophysics-aware

features and rank these features. The top features were used to train the XGBoost model
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for the classification and regression tasks. The biophysics-aware features perform almost

similar to the GNN model for the classification task (95.86%) and outperforms the GNN

method for the regression task (7.15%). We then interpret the important features learnt by

our models. We use the feature importance to identify the residue pairs which can be used to

distinguish between the active, inactive, and intermediate conformation of GPCRs. Finally,

we propose a list of residue pairs that can be used to develop a quantitative description of

the GPCR states. This work and its conclusions can be extended and applied to understand

the transition between the active and inactive conformation of a GPCR protein and design

therapeutics to identify the important reside pairs for the transition.
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